Visualizing engineering design data using a modified two-level self-organizing map clustering approach
نویسندگان
چکیده
Engineers tasked with designing large and complex systems are continually in need of decision-making aids able to sift through enormous amounts of data produced through simulation and experimentation. Understanding these systems often requires visualizing multidimensional design data. Visual cues such as size, color, and symbols are often used to denote specific variables (dimensions) as well as characteristics of the data. However, these cues are unable to effectively convey information attributed to a system containing more than three dimensions. Two general techniques can be employed to reduce the complexity of information presented to an engineer: dimension reduction, and individual variable comparison. Each approach can provide a comprehensible visualization of the resulting design space, which is vital for an engineer to decide upon an appropriate optimization algorithm. Visualization techniques, such as self-organizing maps (SOMs), offer powerful methods able to surmount the difficulties of reducing the complexity of n-dimensional data by producing simple to understand visual representations that quickly highlight trends to support decision-making. The SOM can be extended by providing relevant output information in the form of contextual labels. Furthermore, these contextual labels can be leveraged to visualize a set of output maps containing statistical evaluations of each node residing within a trained SOM. These maps give a designer a visual context to the data set’s natural topology by highlighting the nodal performance amongst the maps. A drawback to using SOMs is the clustering of promising points with predominately less desirable data. Similar data groupings can be revealed from the trained output maps using visualization techniques such as the SOM, but these are not inherently cluster analysis methods. Cluster analysis is an approach able to assimilate similar data objects into “natural
منابع مشابه
NGTSOM: A Novel Data Clustering Algorithm Based on Game Theoretic and Self- Organizing Map
Identifying clusters is an important aspect of data analysis. This paper proposes a noveldata clustering algorithm to increase the clustering accuracy. A novel game theoretic self-organizingmap (NGTSOM ) and neural gas (NG) are used in combination with Competitive Hebbian Learning(CHL) to improve the quality of the map and provide a better vector quantization (VQ) for clusteringdata. Different ...
متن کاملSelf Organizing Maps: A Robust Implementation
Methods for visualizing multidimensional data are of great interest in computer science and engineering. One popular technique is selforganizing map, a type of neural network, that uses machine learning algorithms to map multidimensional data to a two-dimensional surface. They are widely used for exploratory data analysis and visualization and have been used to perform clustering and classifica...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملApplication of a Self-Organizing Map for Clustering the Groundwater Quality in Kerman Province and Assessment its Suitability for Drinking and Irrigation Purposes
Evaluation of groundwater hydro chemical characteristics is necessary for planning and water resources management in terms of quality. In the present study, a self-organizing map (SOM) clustering technique was used to recognize the homogeneous clusters of hydro chemical parameters in water resources (including well, spring and qanat) of Kerman province; then, the quality classification of groun...
متن کاملA clustering approach for mineral potential mapping: A deposit-scale porphyry copper exploration targeting
This work describes a knowledge-guided clustering approach for mineral potential mapping (MPM), by which the optimum number of clusters is derived form a knowledge-driven methodology through a concentration-area (C-A) multifractal analysis. To implement the proposed approach, a case study at the North Narbaghi region in the Saveh, Markazi province of Iran, was investigated to discover porphyry ...
متن کامل